Arabic Forced Alignment: From WebMAUS to Whisper and wav2vec2

Jalal Al-Tamimi

Université Paris Cité - Laboratoire de linguistique formelle (LLF) - UMR-7110

11th RJCP (Rencontres Jeunes Chercheurs en Parole) - Workshop TAL (LLF) 5 November 2025

Overview

Introduction

WebMAUS

wav2vec2 and Whisper

Discussion and Conclusion

Overview

Introduction

Motivations of study Collaborators and student support

WebMAUS

wav2vec2 and Whisper

Discussion and Conclusion

- ► Rationale
 - ▶ Lack of open source and accessible transcribed and time-aligned multidialectal Arabic dataset
 - ► Lack of diacritised Arabic script
 - ▶ Inaccessibility of some romanisation/transliteration systems

- ► Rationale
 - ▶ Lack of open source and accessible transcribed and time-aligned multidialectal Arabic dataset
 - ► Lack of diacritised Arabic script
 - ▶ Inaccessibility of some romanisation/transliteration systems
- ▶ Led to the development of the first free, open-source, accessible and GDPR compliant romanisation and forced-alignment systems: Arabic WebMAUS Al-Tamimi et al., 2022

- ► Rationale
 - ▶ Lack of open source and accessible transcribed and time-aligned multidialectal Arabic dataset
 - ► Lack of diacritised Arabic script
 - ▶ Inaccessibility of some romanisation/transliteration systems
- ▶ Led to the development of the first free, open-source, accessible and GDPR compliant romanisation and forced-alignment systems: Arabic WebMAUS Al-Tamimi et al., 2022
- ▶ I'll present the Arabic WebMAUS system; how it was built, data used, what it can do, and issues

- ► Rationale
 - ▶ Lack of open source and accessible transcribed and time-aligned multidialectal Arabic dataset
 - ► Lack of diacritised Arabic script
 - ▶ Inaccessibility of some romanisation/transliteration systems
- ▶ Led to the development of the first free, open-source, accessible and GDPR compliant romanisation and forced-alignment systems: Arabic WebMAUS Al-Tamimi et al., 2022
- ▶ I'll present the Arabic WebMAUS system; how it was built, data used, what it can do, and issues
- ▶ I'll end with current developments and remaining to do.

Jalal Al-Tamimi \rightarrow ATR system; Jordanian I, Moroccan, Lebanese, Levantine; Coordination; Funding

Jalal Al-Tamimi \rightarrow ATR system; Jordanian I, Moroccan, Lebanese, Levantine; Coordination; Funding

Florian Schiel: WebMAUS development

Jalal Al-Tamimi → ATR system; Jordanian I, Moroccan, Lebanese, Levantine; Coordination; Funding

Florian Schiel: WebMAUS

Khalid Alsubaie: Saudi dataset III

Navdeep Sokhey: Bahraini/Egyptian I datasets

Djegdjiga Amazouz: Algerian dataset

Abdulrahman Dallak: Saudi dataset I

Hajar Moussa: Saudi dataset II

Jalal Al-Tamimi → ATR system; Jordanian I, Moroccan, Lebanese, Levantine; Coordination; Funding

Florian Schiel: WebMAUS

Khalid Alsubaie: Saudi dataset III

Ghada Khattab: Lebanese/Levantine datasets

Omnia Ibrahim: Egyptian dataset II

Navdeep Sokhey: Bahraini/Egyptian I datasets

Mohammad Abuoudeh: Jordanian dataset II

Djegdjiga Amazouz: Algerian dataset

Abdulrahman Dallak: Saudi dataset I

Hajar Moussa: Saudi dataset II

Ghada Khattab:

Lebanese/Levantine

Jalal Al-Tamimi → ATR system; Jordanian I, Moroccan, Lebanese, Levantine; Coordination; Funding

Florian Schiel: WebMAUS development

Khalid Alsubaie: Saudi dataset III

Omnia Ibrahim: Egyptian dataset II

Mohammad Abuoudeh: Jordanian dataset II

Navdeep Sokhev:

Bahraini/Egyptian I

Djegdjiga Amazouz: Algerian dataset

Míša Hejná: Verification alignment

Abdulrahman Dallak: Saudi dataset I

Wael Almurashi: Verification alignment

Hajar Moussa: Saudi dataset II

Rana Almbark: Verification alignment

Ourooba Shetewi: Verification

alignment

Ghada Khattab:

Lebanese/Levantine

datasets

Jalal Al-Tamimi → ATR system; Jordanian I, Moroccan, Lebanese, Levantine; Coordination; Funding

Florian Schiel: WebMAUS

Khalid Alsubaie: Saudi dataset III

Ourooba Shetewi:

Verification

alignment

Omnia Ibrahim: Egyptian dataset II

Amina Diarfi: Automatic transcription

Navdeep Sokhev: Bahraini/Egyptian I datasets

Mohammad Abuoudeh: Jordanian dataset II

Youngs Maatallaoui: whisper, wav2vec2. diacritization, API

Diegdiiga Amazouz: Algerian dataset

Míša Hejná: Verification alignment

Ludivine Huchin: wav2vec2. webMAUS, API

Abdulrahman Dallak Saudi dataset I

Wael Almurashi: Verification alignment

Shuhua Cao wav2vec2. webMAUS, API

Hajar Moussa: Saudi dataset II

Rana Almbark: Verification alignment

Alexandre Gallot: Data processing. wav2vec2

Overview

Introduction

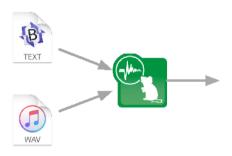
WebMAUS

WebMAUS - BAS Webservices Arabic WebMAUS

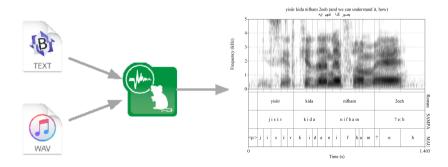
wav2vec2 and Whisper

Discussion and Conclusion

WebMAUS - BAS Webservices


- ▶ WebMAUS ("BAS WebServices") ⇒ suite of webservices, free for academic users
- Comprises around speech and language processing tools (Kisler et al., 2017)
- ▶ Since its introduction in 2013, roughly 17 million media files (April 2022); likely over 20 million now!
- ▶ A powerful pipeline framework allows concatenation of several individual services
 - ▶ Automatic phonetic and syllabic segmentation
 - ▶ Labelling of a speech recording is first performed using Automatic Speech Recognition (ASR)
 - ► Text-to-phoneme translation, the WebMAUS engine and a Syllabification service in one processing call.
 - ► Etc..
- ▶ Additional tools, e.g., speaker diarisation, speech enhancement, noise reduction, automatic transcription (Google Cloud services; local installation of whisperX), etc.

WebMAUS - BAS Webservices


- ▶ WebMAUS ("BAS WebServices") ⇒ suite of webservices, free for academic users
- ▶ Comprises around speech and language processing tools (Kisler et al., 2017)
- ▶ Since its introduction in 2013, roughly 17 million media files (April 2022); likely over 20 million now!
- ▶ A powerful pipeline framework allows concatenation of several individual services
 - ▶ Automatic phonetic and syllabic segmentation
 - Labelling of a speech recording is first performed using Automatic Speech Recognition (ASR)
 - ► Text-to-phoneme translation, the WebMAUS engine and a Syllabification service in one processing call.
 - ► Etc..
- ▶ Additional tools, e.g., speaker diarisation, speech enhancement, noise reduction, automatic transcription (Google Cloud services; local installation of whisperX), etc.
- \blacktriangleright Arabic was not part of WebMAUS services \Rightarrow No accessible open-access transcribed and time-aligned datasets

- ▶ To allow inclusion of Arabic to WebMAUS, various steps were required
 - ▶ A Grapheme-2-Phoneme conversion tool from text-based transcriptions
 - ▶ Various language-specific acoustic models (Arabic WebMAUS)

- ▶ To allow inclusion of Arabic to WebMAUS, various steps were required
 - ▶ A Grapheme-2-Phoneme conversion tool from text-based transcriptions
 - ▶ Various language-specific acoustic models (Arabic WebMAUS)

- ▶ To allow inclusion of Arabic to WebMAUS, various steps were required
 - ▶ A Grapheme-2-Phoneme conversion tool from text-based transcriptions
 - ▶ Various language-specific acoustic models (Arabic WebMAUS)

▶ We developed both to answer this

ATR Romanisation system I

Arabic script \Rightarrow transcriptions of only consonants and long vowels; Vowelisations (or diacritisation) of the short vowels is generally optional because it can be predictable based on the utterance meaning; Issues

- Forced-alignment systems require a perfect match between character and phoneme Solution \rightarrow A dictionary with specific lexical items associated with specific phonemic transcriptions.
 - \rightarrow Standard Arabic lacks a common and a standardized Romanisation system

ATR Romanisation system I

Arabic script \Rightarrow transcriptions of only consonants and long vowels; Vowelisations (or diacritisation) of the short vowels is generally optional because it can be predictable based on the utterance meaning; Issues

- ► Forced-alignment systems require a perfect match between character and phoneme Solution → A dictionary with specific lexical items associated with specific phonemic transcriptions.
 - ightarrow Standard Arabic lacks a common and a standardized Romanisation system
- ▶ Dialectal Arabic ⇒ spoken-only varieties with no specific written script available (except in some cases)

No specific standardised written system; no diacritisation (even when using Google Cloud services) Multiple spelling variations accepted for a particular word item \rightarrow even a language model would fail to account for all intricacies

ATR Romanisation system I

Arabic script \Rightarrow transcriptions of only consonants and long vowels; Vowelisations (or diacritisation) of the short vowels is generally optional because it can be predictable based on the utterance meaning; Issues

- ► Forced-alignment systems require a perfect match between character and phoneme

 Solution → A dictionary with specific lexical items associated with specific phonemic transcriptions.
 - \rightarrow Standard Arabic lacks a common and a standardized Romanisation system
- ▶ Dialectal Arabic ⇒ spoken-only varieties with no specific written script available (except in some cases)
 - No specific standardised written system; no diacritisation (even when using Google Cloud services) Multiple spelling variations accepted for a particular word item \rightarrow even a language model would fail to account for all intricacies
- ► Current systems not adequate:
 - Arabizi \Rightarrow generic; multiple sounds = same symbol \rightarrow e.g., symbols '2' and 'a' for the letter hamza (for IPA /?/; X-SAMPA '?')
 - Buckwalter Arabic translator of Arabic script to romanized symbols \Rightarrow although it allows for vowelisation of short vowels, these are unfortunately rarely transcribed in the orthographic transcriptions

ATR Romanisation system II

Our solution

- ▶ Develop a phonetically-based orthographic transcription of spoken speech
- ▶ Transparent and direct match between sounds and orthography with a 1-to-1 match between a produced sound and a symbol to transcribe it, using ASCII characters.
- ▶ ATR contains 98 phonemes ⇒ covers all possible sounds present in the various varieties including standard

ATR Romanisation system II

Our solution

- ▶ Develop a phonetically-based orthographic transcription of spoken speech
- ▶ Transparent and direct match between sounds and orthography with a 1-to-1 match between a produced sound and a symbol to transcribe it, using ASCII characters.
- \blacktriangleright ATR contains 98 phonemes \Rightarrow covers all possible sounds present in the various varieties including standard
- ▶ Many phonetic variants included, e.g.,
 - ▶ All MSA Cs (singleton and geminates) and Vs (short and long)
 - ▶ Phonemes $\langle z^{\varsigma} \rangle$ and $\langle d^{\varsigma} \delta^{\varsigma} \rangle$, $\langle l^{\varsigma} \rangle$
 - \triangleright Variants of $\langle x \chi \rangle$ or $\langle y \kappa \rangle$
 - ► Phonemes /q g/
 - ▶ Phonemes /tʃ ʤ/
 - ightharpoonup 12 long + 12 short vowels
 - ► Etc..

ATR Romanisation system III

49 phonemes \Rightarrow Geminates + long vowels table (*2 for singleton and short vowels).

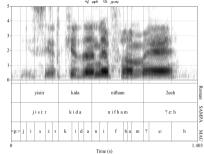
IPA	ATR System	X-SAMPA
??	22	??
bb	bb	bb
tt	tt	tt
99	$t \ t \$	TT
33	jj	ZZ
ħħ	HH	X\
XX	XX	XX
XX dd	XX	XX
	dd	$^{ m dd}$
ðð	d/d	DD
rr	rr	rr
ZZ	ZZ	ZZ
SS	SS	SS
\mathbb{I}	s s	SS
s ² s ²	SS	s_?\s_?\
d ^s d ^s	DD	d_?\d_?\
t°t°	TT	t_?\t_?\
₹676	$D\backslash D\backslash$	D_?\D_?\
\mathbf{z}_{z}	ZZ	z_?\z_?\

IPA	ATR System	X-SAMPA
1515	LL	l_?\l_?\
22	33	?\
ΥΥ	GG	GĞ
RR	G\G\	G\G\
ff	ff	ff
qq	qq	qq
gg kk	gg kk	gg
		kk
- 11	11	11
mm	mm	mm
nn	nn	nn
hh	hh	hh
ww	ww	ww
jj	уу	jj
tſtſ	chch	tStS
අය	djdj	dZdZ
vv	vv	vv
pp	pp	pp

IPA	ATR System	X-SAMPA
i:	ii	i:
I:	II	I:
e:	ee	e:
:3	EE	E:
æ:	aeae	{ :
a:	aa	a:
a:	AA	A:
);	00	O:
o:	00	o:
u:	uu	u:
U:	UU	U:
9:	00	@:

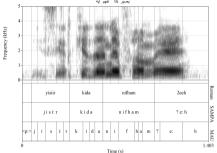
- ightharpoonup Acoustic model \Rightarrow estimates the posterior probability for a phone class given a segment of speech
- ▶ Pronunciation (language) model ⇒ estimates the probability of a sequence of spoken phones
- ightharpoonup AM \Rightarrow 98 phoneme classes to represent nearly all Arabic varieties
- ightharpoonup Ideally \Rightarrow
 - Verified segmented and labelled training set of speech recordings
 - ▶ Enough samples of each phoneme class from every Arabic variety
 - Spoken by at least 50 native speakers of both sexes

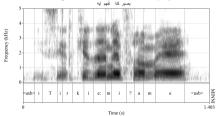

- ightharpoonup Acoustic model \Rightarrow estimates the posterior probability for a phone class given a segment of speech
- ▶ Pronunciation (language) model ⇒ estimates the probability of a sequence of spoken phones
- ightharpoonup AM \Rightarrow 98 phoneme classes to represent nearly all Arabic varieties
- ightharpoonup Ideally \Rightarrow
 - Verified segmented and labelled training set of speech recordings
 - ▶ Enough samples of each phoneme class from every Arabic variety
 - Spoken by at least 50 native speakers of both sexes
 - ▶ Issue \Rightarrow no publicly available resources to fulfil these requirements!


- ▶ Acoustic model ⇒ estimates the posterior probability for a phone class given a segment of speech
- ▶ Pronunciation (language) model ⇒ estimates the probability of a sequence of spoken phones
- ightharpoonup AM \Rightarrow 98 phoneme classes to represent nearly all Arabic varieties
- ightharpoonup Ideally \Rightarrow
 - Verified segmented and labelled training set of speech recordings
 - ▶ Enough samples of each phoneme class from every Arabic variety
 - ▶ Spoken by at least 50 native speakers of both sexes
 - ▶ Issue ⇒ no publicly available resources to fulfil these requirements!
- \triangleright Solution \Rightarrow
 - Collected speech recordings from various Arabic varieties.
 - Bahraini, Saudi Arabian, Lebanese, Levantine (comprised of Lebanese, Syrian, Palestinian Arabic).
 - ightharpoonup Recordings + transcriptions \Rightarrow collected, unified and merged into a common annotation format
 - ▶ Automatically segmented using the language-independent system of WebMAUS + manual verification
 - ▶ Time-aligned speech signal + orthographic/phonetic transliteration and segmentation
 - ► Transcription convention ⇒ broad phonetic transcription of the incoming signal; accommodated within the ATR system ⇒ Optimal bottom-up approach to the transcription which relied on what speakers said and how they said it

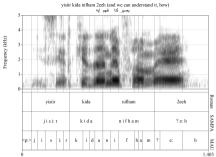
- ▶ Acoustic model ⇒ estimates the posterior probability for a phone class given a segment of speech
- ightharpoonup Pronunciation (language) model \Rightarrow estimates the probability of a sequence of spoken phones
- ightharpoonup AM \Rightarrow 98 phoneme classes to represent nearly all Arabic varieties
- ightharpoonup Ideally \Rightarrow
 - ▶ Verified segmented and labelled training set of speech recordings
 - ▶ Enough samples of each phoneme class from every Arabic variety
 - Spoken by at least 50 native speakers of both sexes
 - ► Issue ⇒ no publicly available resources to fulfil these requirements!
- \triangleright Solution \Rightarrow
 - ▶ Collected speech recordings from various Arabic varieties.
 - Bahraini, Saudi Arabian, Lebanese, Levantine (comprised of Lebanese, Syrian, Palestinian Arabic).
 - ▶ Recordings + transcriptions ⇒ collected, unified and merged into a common annotation format
 ▶ Automatically segmented using the language-independent system of WebMAUS + manual verification
 - Time-aligned speech signal + orthographic/phonetic transliteration and segmentation
 - ► Transcription convention ⇒ broad phonetic transcription of the incoming signal; accommodated within the ATR system ⇒ Optimal bottom-up approach to the transcription which relied on what speakers
 - said and how they said it

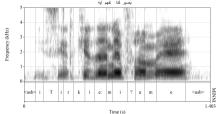
 Arabic WebMAUS (version 2) \Rightarrow 6610 recordings, from 94 speakers, with a total duration of 16h10min and 509804 labelled phone segments

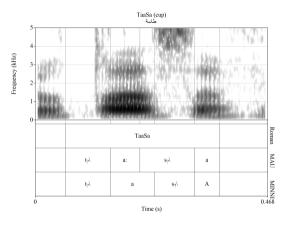

Frequency (kHz)



Sentence




yisiir kida nifham 2eeh (and we can understand it, how) یصیر کدا نقهم ایه


Sentence

Time (s)
yisiir kida nifham 2eeh (and we can understand it, how)
يصير كدا تقهم ايه

Sentence

- ▶ Performance
 - Arabic WebMAUS $\Rightarrow \approx 95\%$ accuracy at 20ms, comparable to other systems; increasing to 100% for nasals, laterals, and some back consonants; much lower for other!

- ▶ Performance
 - ▶ Arabic WebMAUS $\Rightarrow \approx 95\%$ accuracy at 20ms, comparable to other systems; increasing to 100% for nasals, laterals, and some back consonants; much lower for other!
 - ► Arabic WebMINNI \Rightarrow Variable \approx Baseline 50% 100%

- ▶ Performance
 - Arabic WebMAUS $\Rightarrow \approx 95\%$ accuracy at 20ms, comparable to other systems; increasing to 100% for nasals, laterals, and some back consonants; much lower for other!
 - ► Arabic WebMINNI \Rightarrow Variable \approx Baseline 50% 100%
- \triangleright Increase performance and sample size \Rightarrow
 - \blacktriangleright Various new datasets over 200 participants \to 100 Jordanian; 20 Saudi; 30 Egyptian, 20 Lebanese; 20 Algerian; 10 Moroccan
 - \triangleright Variable types of data \Rightarrow Word lists, spontaneous, read and retold stories, etc.

- ▶ Performance
 - Arabic WebMAUS $\Rightarrow \approx 95\%$ accuracy at 20ms, comparable to other systems; increasing to 100% for nasals, laterals, and some back consonants; much lower for other!
 - ► Arabic WebMINNI \Rightarrow Variable \approx Baseline 50% 100%
- \triangleright Increase performance and sample size \Rightarrow
 - \blacktriangleright Various new datasets over 200 participants \to 100 Jordanian; 20 Saudi; 30 Egyptian, 20 Lebanese; 20 Algerian; 10 Moroccan
 - \triangleright Variable types of data \Rightarrow Word lists, spontaneous, read and retold stories, etc.
- ► Issues related to transcription

Overview

Introduction

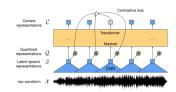
WebMAUS

wav2vec2 and Whisper Variability in Arabic wav2vec2 and whisper

Discussion and Conclusion

Variability in Arabic

- ▶ Working on obtaining phonetically-informed automatic transcription of dialectal Arabic
- ▶ Accounting for dialectal variation (see M2 thesis work by Maatallaoui, 2025:24)

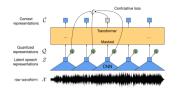

Variability in Arabic

- ▶ Working on obtaining phonetically-informed automatic transcription of dialectal Arabic
- ▶ Accounting for dialectal variation (see M2 thesis work by Maatallaoui, 2025:24)

Phoneme	Realizations	Example	Dialects	Notes	
/q/	[?], [g], [q]	قلب /qalb/ $ o$ [?alb], [galb]	Egyptian, Gulf, Levantine	Urban vs. rural distinc-	
				tion	
/ d 3/	[ʒ], [ɡ], [j]	جمل / $\overline{ ext{d} ext{3}}$ amal/ $ o$ [ʒamal], [gamal], [jamal]	Maghreb, Egypt, Levant	Sociolinguistic variation	
/0/	[s], [t], [z]	ಚು /θala:θa/ → [tala:ta], [sala:sa]	Egypt, Sudan, Gulf	Fricative \rightarrow stop	
/k/	[tʃ]	/kabi:r/ → [t͡ʃbi:r]	Gulf, Iraqi	Gender/context-based	
				shift	
/ð/	[d], [z]	هذا /ha:ða:/ $ ightarrow$ [haza], [hada]	Egyptian, Levantine	Fricative \rightarrow voiced stop	
/ɣ/	[R]' [L]	yari:b/ → [ʁari:b], [ʕari:b] غريب	Gulf, Moroccan	Uvular vs. pharyngeal	
/r/	[t]' [t]' [R]	رجل /raʒul/ $ ightarrow$ $[{ m ra}\ { m ul}],\ [{ m f ka}{ m f zul}]$	Moroccan, Iraqi	Trill, tap, or uvular	
Emphatics	Vowel backing, spread	صديق /s^adi:q $/ o [s^{ m f} d^{ m f} i:q], [{ m sadi:} q]$	MSA vs. dialects	Stronger in Maghreb	
Short vowels	Elision, centralization	کتب /kataba/ $ ightarrow$ [ktib]	Moroccan, Levantine	Causes alignment errors	

▶ Used state-of-the-art approaches wav2vec2 and whisper ⇒ Constitute foundation of recent advances in multilingual and low-resource speech processing

- ▶ Used state-of-the-art approaches wav2vec2 and whisper ⇒ Constitute foundation of recent advances in multilingual and low-resource speech processing
- wav2vec2
 - ▶ Self-supervised pretrained model for ASR (Baevski et al., 2020)
 - ► Trained on large amount of raw audios ⇒ masking parts of the representations and learning to predict the true representations using contrastive learning
 - Multiple layers initialised through the Transformer encoder \Rightarrow mapping features to corresponding tokens through the Connectionist Temporal Classification (CTC)

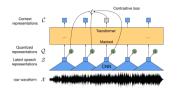

▶ Used state-of-the-art approaches wav2vec2 and whisper ⇒ Constitute foundation of recent advances in multilingual and low-resource speech processing

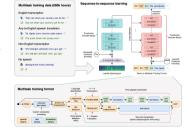
wav2vec2

- Self-supervised pretrained model for ASR (Baevski et al., 2020)
- ► Trained on large amount of raw audios ⇒ masking parts of the representations and learning to predict the true representations using contrastive learning
- Multiple layers initialised through the Transformer encoder ⇒ mapping features to corresponding tokens through the Connectionist Temporal Classification (CTC)

Whisper

- Supervised model pretrained on a large dataset of 680k hours of labeled multilingual and multitask speech (Radford et al., 2023)
- ▶ Use of Transformer-based encoder-decoder design ⇒ Audios are first preprocessed to obtain the Log-Mel Spectogram, with feature normalization
- Audios passed through two 1D-convolutional layers with positional embeddings and obtains contextual latent representations Output ⇒ generated transcriptions using the learned embeddings

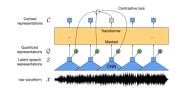

▶ Used state-of-the-art approaches wav2vec2 and whisper ⇒ Constitute foundation of recent advances in multilingual and low-resource speech processing


wav2vec2

- Self-supervised pretrained model for ASR (Baevski et al., 2020)
- ► Trained on large amount of raw audios ⇒ masking parts of the representations and learning to predict the true representations using contrastive learning
- Multiple layers initialised through the Transformer encoder ⇒ mapping features to corresponding tokens through the Connectionist Temporal Classification (CTC)

Whisper

- Supervised model pretrained on a large dataset of 680k hours of labeled multilingual and multitask speech (Radford et al., 2023)
- ▶ Use of Transformer-based encoder-decoder design ⇒ Audios are first preprocessed to obtain the Log-Mel Spectogram, with feature normalization
- Audios passed through two 1D-convolutional layers with positional embeddings and obtains contextual latent representations Output ⇒ generated transcriptions using the learned embeddings
- ▶ Both capture fine phonetic details and overall meaning
 - Wav2vec2 focuses on the acoustic details and subtle variations
 → Looks at a specific tree (or actually branch) and fine-grained speech
 characteristics
 - ⇒ Not ideal for broader semantic context in ambiguous cases


▶ Used state-of-the-art approaches wav2vec2 and whisper ⇒ Constitute foundation of recent advances in multilingual and low-resource speech processing

wav2vec2

- Self-supervised pretrained model for ASR (Baevski et al., 2020)
- Trained on large amount of raw audios ⇒ masking parts of the representations and learning to predict the true representations using contrastive learning
- Multiple layers initialised through the Transformer encoder ⇒ mapping features to corresponding tokens through the Connectionist Temporal Classification (CTC)

Whisper

- Supervised model pretrained on a large dataset of 680k hours of labeled multilingual and multitask speech (Radford et al., 2023)
- ▶ Use of Transformer-based encoder-decoder design ⇒ Audios are first preprocessed to obtain the Log-Mel Spectogram, with feature normalization
- Audios passed through two 1D-convolutional layers with positional embeddings and obtains contextual latent representations Output ⇒ generated transcriptions using the learned embeddings
- ▶ Both capture fine phonetic details and overall meaning
 - ▶ Wav2vec2 focuses on the acoustic details and subtle variations
 → Looks at a specific tree (or actually branch) and fine-grained speech characteristics
 - ⇒ Not ideal for broader semantic context in ambiguous cases
 - Whisper adopts a high-level, semantic-driven approach
 → Looks at the forest ⇒ producing fluent and plausible transcriptions that make sense in context, even when input audio is unclear
 - ⇒ misses subtle phonetic nuances and pronunciation differences

- ► Maatallaoui (2025)'s M2 thesis (see Maatallaoui and Al-Tamimi, in preparation)
- Aim ⇒ Build an ASR model that preserves phonetic fidelity, unlike what is common in existing Arabic ASR systems
- Datasets
 - Data from 94 speakers (Al-Tamimi et al., 2022)
 - ▶ 10 Levantine Arabic (producing real words) (Khattab et al., 2024)
 - ▶ 10 Egyptian Arabic (Ibrahim et al., 2020)
 - ► 60 Jordanian Arabic (Abuoudeh et al., 2024a,b)

Variety	NbWords	Duration
Arabic Bahraini	9 532	00:52:46
Arabic Egyptian	7 108	00:41:06
Arabic Lebanese	7 323	01:17:11
Arabic Levantine 1	2 034	00:26:39
Arabic Levantine 2	3 825	01:52:30
Arabic Saudi 1	26 806	02:59:38
Arabic Saudi 2	20 968	02:16:40
Arabic Jordanian	27 159	02:48:33
Arabic Standard	120 094	22:38:29
Total	224 849	35:53:30

- ► Maatallaoui (2025)'s M2 thesis (see Maatallaoui and Al-Tamimi, in preparation)
- ➤ Aim ⇒ Build an ASR model that preserves phonetic fidelity, unlike what is common in existing Arabic ASR systems
- Datasets
 - Data from 94 speakers (Al-Tamimi et al., 2022)
 - ▶ 10 Levantine Arabic (producing real words) (Khattab et al., 2024)
 - ▶ 10 Egyptian Arabic (Ibrahim et al., 2020)
 - ▶ 60 Jordanian Arabic (Abuoudeh et al., 2024a,b)

Variety	NbWords	Duration
Arabic Bahraini	9 532	00:52:46
Arabic Egyptian	7 108	00:41:06
Arabic Lebanese	7 323	01:17:11
Arabic Levantine 1	2 034	00:26:39
Arabic Levantine 2	3 825	01:52:30
Arabic Saudi 1	26 806	02:59:38
Arabic Saudi 2	20 968	02:16:40
Arabic Jordanian	27 159	02:48:33
Arabic Standard	120 094	22:38:29
Total	224 849	35:53:30

- ▶ Dialectal data ⇒ Romanized transcriptions converted to Arabic script with/out diacritics using the ATR converter tool (Maatallaoui and Al-Tamimi, in preparation); Standard Arabic with diacritics
- ► Full datasets ⇒ Divided into 80-10-10% (training, validation and testing)
- ightharpoonup Wav2vec2 \Rightarrow trained and evaluated on the dialectal Arabic \rightarrow 5 hours with 2 epochs
- ▶ Whisper (small) ⇒ finetuned on both dialectal and diacritized Standard Arabic
- ▶ Word Error Rate (WER%), Diacritization Error Rate (DER%), and Character Error Rate (CER%)

- Maatallaoui (2025) S M2 thesis (see Maatallaoui and Al-Tamimi, in preparation)
- ▶ Whisper on diacritised text
 - \blacktriangleright With diacritics \Rightarrow 0.2561 (WER); 0.1113 (DER); 0.0829 (CER)

- Maatallaoui (2025) s M2 thesis (see Maatallaoui and Al-Tamimi, in preparation)
- ▶ Whisper on diacritised text
 - ▶ With diacritics \Rightarrow 0.2561 (WER); 0.1113 (DER); 0.0829 (CER)
 - ▶ Stripped diacritics \Rightarrow 0.1689 WER); 0.0707 (CER)

- ► Maatallaoui (2025) S M2 thesis (see Maatallaoui and Al-Tamimi, in preparation)
- ▶ Whisper on diacritised text
 - ▶ With diacritics \Rightarrow 0.2561 (WER); 0.1113 (DER); 0.0829 (CER)
 - ▶ Stripped diacritics \Rightarrow 0.1689 WER); 0.0707 (CER)
 - ▶ Wav2vec2 ⇒ inscreased (WER (close to 50%) on evaluation → frequent incoherence, especially in cases involving dialectal variation and learner pronunciation errors

- ► Maatallaoui (2025) s M2 thesis (see Maatallaoui and Al-Tamimi, in preparation)
- ▶ Whisper on diacritised text
 - \blacktriangleright With diacritics $\Rightarrow 0.2561$ (WER); 0.1113 (DER); 0.0829 (CER)
 - ▶ Stripped diacritics \Rightarrow 0.1689 WER); 0.0707 (CER)
 - ► Wav2vec2 ⇒ inscreased (WER (close to 50%) on evaluation → frequent incoherence, especially in cases involving dialectal variation and learner pronunciation errors
 - ▶ Variation ⇒ Overall decrease in the three metrics in "stripped diacritics" condition, except from Levantine Arabic (=isolated words)

With diacritics

Variety	WER	DER	CER
Arabic Bahraini	0.2803	0.1629	0.0868
Arabic Egyptian	0.7377	0.3301	0.3343
Arabic Lebanese	0.1571	0.0422	0.0347
Arabic Levantine	0.0443	0.0000	0.0144
Arabic Saudi	0.1477	0.0660	0.0442
Standard	0.4590	0.2085	0.1450

Stripped diacritics

Variety	WER	DER	CER
Arabic Bahraini	0.2443	_	0.0776
Arabic Egyptian	0.6478	_	0.3364
Arabic Lebanese	0.1148	_	0.0354
Arabic Levantine	0.0443	_	0.0152
Arabic Saudi	0.1074	_	0.0419
Standard	0.2292	_	0.1060

- ► Maatallaoui (2025)'s M2 thesis (see Maatallaoui and Al-Tamimi, in preparation)
- ▶ Whisper on undiacritised text
 - ightharpoonup Overall \Rightarrow 0.1795 (WER); 0.0778 (CER)

- ▶ Maatallaoui (2025)'s M2 thesis (see Maatallaoui and Al-Tamimi, in preparation)
- ► Whisper on undiacritised text
 - ightharpoonup Overall \Rightarrow 0.1795 (WER); 0.0778 (CER)
 - ▶ Variation ⇒ Variable performance, except from Levantine/Lebanese Arabic (=isolated words)

- ▶ Maatallaoui (2025)'s M2 thesis (see Maatallaoui and Al-Tamimi, in preparation)
- ▶ Whisper on undiacritised text
 - ightharpoonup Overall \Rightarrow 0.1795 (WER); 0.0778 (CER)
 - ▶ Variation ⇒ Variable performance, except from Levantine/Lebanese Arabic (=isolated words)

whisper

Variety	WER	\mathbf{CER}
Arabic Bahraini	0.2827	0.0952
Arabic Egyptian	0.6141	0.2853
Arabic Lebanese	0.1107	0.0361
Arabic Levantine	0.0690	0.0189
Arabic Saudi	0.0990	0.0352
Standard	0.2172	0.1011

- ▶ Trials on wav2vec2 on diacritised text showed many inconsistencies
- ▶ Looked at dialectal difference (with Shuhua Cao)
 - ▶ Overall \Rightarrow 0.68 (WER)

- ► Trials on wav2vec2 on diacritised text showed many inconsistencies
- ► Looked at dialectal difference (with Shuhua Cao)
 - ightharpoonup Overall $\Rightarrow 0.68$ (WER)
 - ▶ Variation ⇒ Best performance on Levantine/Lebanese Arabic (=isolated words); difficulties with contextualised and long phrases (on other varieties) ⇒ Issues leading to clear generalisations between datasets.

- ► Trials on wav2vec2 on diacritised text showed many inconsistencies
- ▶ Looked at dialectal difference (with Shuhua Cao)
 - ightharpoonup Overall $\Rightarrow 0.68$ (WER)
 - ▶ Variation ⇒ Best performance on Levantine/Lebanese Arabic (=isolated words); difficulties with contextualised and long phrases (on other varieties) ⇒ Issues leading to clear generalisations between datasets.

wav2vec2

Variety	WER
Arabic Bahraini	0.0305
Arabic Egyptian	0.4119
Arabic Lebanese	0.0611
Arabic Levantine	0.0
Arabic Saudi	0.0848

► Worth exploring performance of wav2vec2 on individual dialects ⇒ Can we benefit from dialectal proximity? ⇒ Next steps

Overview

Introduction

WebMAUS

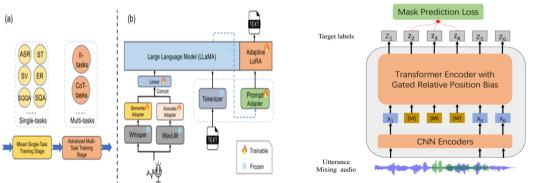
wav2vec2 and Whisper

Discussion and Conclusion

Discussion and Conclusion I

- ▶ Results promising but show several issues
 - ▶ Diacritisation ⇒ challenging task especially for dialectal Arabic
 - \rightarrow Requires large-scale diacritised dataset \Rightarrow Under development via Youtube channels
 - $\approx 14 h59 min$ (see Maatallaoui and Al-Tamimi, under review, LREC)

Discussion and Conclusion I


- ▶ Results promising but show several issues
 - ightharpoonup Diacritisation \Rightarrow challenging task especially for dialectal Arabic
 - \rightarrow Requires large-scale diacritised dataset \Rightarrow Under development via Youtube channels $\approx 14\text{h}59\text{min}$ (see Maatallaoui and Al-Tamimi, under review, LREC)
 - ▶ LLM-Based Diacritisation (using DeepSeek-R1-Distill-Llama-8B) ⇒ Maatallaoui (2025)'s M2 thesis (see Maatallaoui and Al-Tamimi, in preparation) on Classical, Standard and Dialectal Arabic ⇒ Both romanised and diacritised versions (with 16, 20 and 7 hours fine-tuning) ⇒ Promising results, some errors due likely to inconsistent diacritisation/romanisation
 - \Rightarrow Increased processing power and accessibility to large-scale datasets with both romanisation and diacritisation

Discussion and Conclusion II

- ▶ Aim to develop a forced-alignment system leverages LLM and current developments in ASR
- \blacktriangleright Explore dialectal proximity and influence on performance of models \Rightarrow Leverage on performance from wav2vec2

Discussion and Conclusion II

- ▶ Aim to develop a forced-alignment system leverages LLM and current developments in ASR
- ► Explore dialectal proximity and influence on performance of models ⇒ Leverage on performance from wav2vec2
- Explore the use of wavLMMs (Hu et al., 2024) based on wavLM (Chen et al., 2022)

Many thanks to:

My collaborators and participants!

Partial support from the Labex EFL - Strand 1 and inIdEx-EFL (WP4)

High Power Computing (HPC) facilities: CNRS/TGIR HUMA-NUM, IN2P3 and GENCI-IDRIS (Grant 2022-AD010613733)

Thank you... Questions, comments?

Jalal.Al-Tamimi@u-paris.fr

Tutorial material https://tinyurl.com/2ymfy7ys

Atrium Humanités et Sciences Sociales

Model name	Dataset	Newly added Variety	WER Arabic_Saudi	WER Arabic_Leban ese	WER Arabic_Le vantine	WER Arabic_Ba hraini	WER Arabic_ Egyptian
model_on_S audi_1and2	Saudi-1_and 2	Arabic_S audi	0.1173791534941 7588(epoch 7)	-	-	-	-
model_saudi _and_leba	Leb :Saudi =1:1	Arabic_L ebanese	0.128223357588 48177	0.1516304347 8260868 (epoch 4)	-	-	-
model_on_S audi_leba_le van_2	Leba:saud:leva n = 1:1	Arabic_L evantine	0.133483360817 7385	0.1448369565 217391	0.0192307 69230769 232 (epoch6)	-	-
model_on_S audi_leba_le van_Bahr	Bahr_leba_sau d_levan_balan ced	Arabic_B ahraini	0.074246598066 55369	0.0913043478 2608696	0.0	0.2944297 181101801 5	-
model_on_S audi_leba_le van_Bah_2	Bahr_leba_sau d_levan_major Bahr_train	Arabic_B ahraini	0.077653887902 93004	0.0910326086 9565218	0.0	0.2789360 094366812	-
model_on_S audi_leba_le van_Bah_Eg pt	Egyp_leba_sa ud_levan_Bah _balanced_dat aset_train	Arabic_E gyptian	0.071805371399 69188	0.0557065217 3913043	0.0	0.0419322 816590445 7	0.769045 6056161 399
model_on_S audi_leba_le van_Bah_Eg pt_2	Egyp_dataset	Arabic_E gyptian	0.080151023589 7209	0.0475543478 2608696	0.0	0.0435840 053792155 4	0.574101 7142345 557
model_on_S audi_leba_le van_Bah_Eg pt_3	Egyp_Bahr_ba lanced_dataset _train	Arabic_E gyptian	0.074824049584 58598	0.0597826086 95652176	0.0	0.0323827 833830802 3	0.458351 5626344 327(epoc h1)
model_on_S audi_leba_le van_Bah_Eg pt_4	Egyp_leba_bal anced_dataset _train	Arabic_E gyptian	0.072028030505 042	0.0625	0.0	0.0471365 715669844 4	0.432227 9451277 0685
model_on_S audi_leba_le van_Bah_Eg pt_5	Egyp_bahr_leb a_balanced_d ataset_train	Arabic_E gyptian	0.084801564973 97877	0.06114130434 782609	0.0	0.0305448 618249197 33	0.411939 1451763 523

Overview

References

References I

- Abuoudeh, M., Al-Tamimi, J., and Crouzet, O. (2024a). L'impact du style de parole sur l'opposition de longueur des voyelles en arabe jordanien. In Actes Des 35èmes Journées d'Études Sur La Parole (JEP 2024) 31ème Conférence Sur Le Traitement Automatique Des Langues Naturelles (TALN 2024) 26ème Rencontre Des Étudiants Chercheurs En Informatique Pour Le Traitement Automatique Des Langues (RECITAL 2024), Jul 2024, Toulouse, France., pages 421–430, Toulouse 8-12 juillet 2024.
- Abuoudeh, M., Al-Tamimi, J., and Crouzet, O. (2024b). Speaking style influence on vowel length opposition in Jordanian Arabic. In *Proceedings of the 13th International Seminar on Speech Production*, Autrans, France (13-17 May 2024).
- Al-Tamimi, J., Schiel, F., Khattab, G., Sokhey, N., Amazouz, D., Dallak, A., and Moussa, H. (2022). A Romanization System and WebMAUS Aligner for Arabic Varieties. In Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), © European Language Resources Association (ELRA), Licensed under CC-BY-NC-4.0, pages 7269-7276, Marseille, 20-25 June 2022.
- Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. *Advances in neural information processing systems*, 33:12449–12460.
- Chen, S., Wang, C., Chen, Z., Wu, Y., Liu, S., Chen, Z., Li, J., Kanda, N., Yoshioka, T., Xiao, X., Wu, J., Zhou, L., Ren, S., Qian, Y., Qian, Y., Wu, J., Zeng, M., Yu, X., and Wei, F. (2022). WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing. IEEE Journal of Selected Topics in Signal Processing, 16(6):1505-1518.
- Hu, S., Zhou, L., Liu, S., Chen, S., Meng, L., Hao, H., Pan, J., Liu, X., Li, J., Sivasankaran, S., Liu, L., and Wei, F. (2024). WavLLM: Towards Robust and Adaptive Speech Large Language Model. In EMNLP2024 Findings.

References II

- Ibrahim, O., Asadi, H., Kassem, E., and Dellwo, V. (2020). Arabic Speech Rhythm Corpus: Read and Spontaneous Speaking Styles. In Calzolari, N., Béchet, F., Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., and Piperidis, S., editors, Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 5337–5342, Marseille, France. European Language Resources Association.
- Khattab, G., Xing, K., Turton, D., Al-Tamimi, J., and Alsharif, B. (2024). Syllabic and emphatic conditioning of /l/ in Levantine Arabic: An auditory, acoustic and articulatory analysis. In *Proceedings of Ultrafest XI*, University of Aizu 24-25 June 2024.
- Kisler, T., Reichel, U., and Schiel, F. (2017). Multilingual processing of speech via web services. Computer Speech & Language, 45:326–347.
- Maatallaoui, Y. (2025). Advancing Arabic Speech and Text Processing: LLM-Based Diacritization and Fine-Tuning a Dialect- and Variation-Aware Whisper Model. M2 Thesis, Language Sciences, strand: Computational Linguistics, Université Paris Cité, Paris, 26 Juin 2025.
- Maatallaoui, Y. and Al-Tamimi, J. (in preparation). Current developments of Arabic Forced-alignment systems. Maatallaoui, Y. and Al-Tamimi, J. (under review). VoxDamas: A Diacritized Multidialectal Arabic Speech Corpus. In *LREC2026*.
- Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., and Sutskever, I. (2023). Robust speech recognition via large-scale weak supervision. In *International conference on machine learning*, pages 28492–28518. PMLR.
- Schiel, F. (1999). Automatic Phonetic Transcription of Non-Prompted Speech. In *Proc. of the ICPhS*, pages 607–610, San Francisco.