9.2 Read dataset

The dataset comes from one of my projects; this is a subset from one speaker. It provides acoustic correlates that can be used to distinguish between guttural and non-guttural consonants. The former group comprises: uvular, pharyngealised and pharyngeal consonants; the latter, plain, velar and glottal. These six classes were produced in three different vowel environments /i: a: u:/. In each class, there were multiple consonants (total 21). Acoustic measurements are used to quantify supralaryngeal (formant distances on the Bark scale) and laryngeal (voice quality) measurements.

dfPharV2 <- read_csv("data/dfPharV2.csv")
## Rows: 402 Columns: 25
## ── Column specification ───────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): contextN, context
## dbl (23): CPP, Energy, H1A1c, H1A2c, H1A3c, H1H2c, H2H4c, H2KH5Kc, H42Kc, HN...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dfPharV2
## # A tibble: 402 × 25
##    contextN context    CPP Energy H1A1c H1A2c   H1A3c   H1H2c H2H4c H2KH5Kc
##    <chr>    <chr>    <dbl>  <dbl> <dbl> <dbl>   <dbl>   <dbl> <dbl>   <dbl>
##  1 G_01     Guttural  23.5  22.8   15.2  16.0 -3.30   -1.18    2.65    23.2
##  2 G_02     Guttural  25.7  22.8   13.2  11.6 -5.92   -0.739   1.65    16.5
##  3 G_03     Guttural  19.6   9.16  16.5  18.5  0.604  -0.928   4.50    18.5
##  4 G_04     Guttural  23.6  17.2   16.0  20.1 -7.63    0.782   2.42    28.2
##  5 G_05     Guttural  26.0  15.6   14.5  14.6 -6.73    0.0442  3.13    27.6
##  6 G_06     Guttural  24.5  14.4   16.6  16.6 -5.46    1.34    4.51    21.6
##  7 G_07     Guttural  23.1  18.6   15.0  15.8 -5.94   -0.211   2.11    26.3
##  8 G_08     Guttural  22.2   9.04  17.1  18.4  2.10   -0.742   3.41    19.1
##  9 G_09     Guttural  28.4  25.5   12.5  15.1 -3.33   -1.59    3.80    25.6
## 10 G_10     Guttural  28.2  15.8   14.7  16.3 -0.0528  0.108   3.50    22.5
## # ℹ 392 more rows
## # ℹ 15 more variables: H42Kc <dbl>, HNR05 <dbl>, HNR15 <dbl>, HNR25 <dbl>,
## #   HNR35 <dbl>, SHR <dbl>, soe <dbl>, Z1mnZ0 <dbl>, Z2mnZ1 <dbl>,
## #   Z3mnZ2 <dbl>, Z4mnZ3 <dbl>, F0Bark <dbl>, A1mnA2 <dbl>, A1mnA3 <dbl>,
## #   A2mnA3 <dbl>
dfPharV2 <- dfPharV2 %>% 
  mutate(context = factor(context, levels = c("Non-Guttural", "Guttural")))
dfPharV2
## # A tibble: 402 × 25
##    contextN context    CPP Energy H1A1c H1A2c   H1A3c   H1H2c H2H4c H2KH5Kc
##    <chr>    <fct>    <dbl>  <dbl> <dbl> <dbl>   <dbl>   <dbl> <dbl>   <dbl>
##  1 G_01     Guttural  23.5  22.8   15.2  16.0 -3.30   -1.18    2.65    23.2
##  2 G_02     Guttural  25.7  22.8   13.2  11.6 -5.92   -0.739   1.65    16.5
##  3 G_03     Guttural  19.6   9.16  16.5  18.5  0.604  -0.928   4.50    18.5
##  4 G_04     Guttural  23.6  17.2   16.0  20.1 -7.63    0.782   2.42    28.2
##  5 G_05     Guttural  26.0  15.6   14.5  14.6 -6.73    0.0442  3.13    27.6
##  6 G_06     Guttural  24.5  14.4   16.6  16.6 -5.46    1.34    4.51    21.6
##  7 G_07     Guttural  23.1  18.6   15.0  15.8 -5.94   -0.211   2.11    26.3
##  8 G_08     Guttural  22.2   9.04  17.1  18.4  2.10   -0.742   3.41    19.1
##  9 G_09     Guttural  28.4  25.5   12.5  15.1 -3.33   -1.59    3.80    25.6
## 10 G_10     Guttural  28.2  15.8   14.7  16.3 -0.0528  0.108   3.50    22.5
## # ℹ 392 more rows
## # ℹ 15 more variables: H42Kc <dbl>, HNR05 <dbl>, HNR15 <dbl>, HNR25 <dbl>,
## #   HNR35 <dbl>, SHR <dbl>, soe <dbl>, Z1mnZ0 <dbl>, Z2mnZ1 <dbl>,
## #   Z3mnZ2 <dbl>, Z4mnZ3 <dbl>, F0Bark <dbl>, A1mnA2 <dbl>, A1mnA3 <dbl>,
## #   A2mnA3 <dbl>